Structural Basis for the Histone Chaperone Activity of Asf1

نویسندگان

  • Christine M. English
  • Melissa W. Adkins
  • Joshua J. Carson
  • Mair E.A. Churchill
  • Jessica K. Tyler
چکیده

Anti-silencing function 1 (Asf1) is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. The structure of the globular domain of Asf1 bound to H3/H4 determined by X-ray crystallography to a resolution of 1.7 Angstroms shows how Asf1 binds the H3/H4 heterodimer, enveloping the C terminus of histone H3 and physically blocking formation of the H3/H4 heterotetramer. Unexpectedly, the C terminus of histone H4 that forms a mini-beta sheet with histone H2A in the nucleosome undergoes a major conformational change upon binding to Asf1 and adds a beta strand to the Asf1 beta sheet sandwich. Interactions with both H3 and H4 were required for Asf1 histone chaperone function in vivo and in vitro. The Asf1-H3/H4 structure suggests a "strand-capture" mechanism whereby the H4 tail acts as a lever to facilitate chromatin disassembly/assembly that may be used ubiquitously by histone chaperones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment.

Transcriptional silencing involves the formation of specialized repressive chromatin structures. Previous studies have shown that the histone H3-H4 chaperone known as chromatin assembly factor 1 (CAF-1) contributes to transcriptional silencing in yeast, although the molecular basis for this was unknown. In this work we have identified mutations in the nonconserved C terminus of antisilencing fu...

متن کامل

The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3–H4 tetramers and Asf1–H3–H4 complexes

Vps75 is a histone chaperone that has been historically characterized as homodimer by X-ray crystallography. In this study, we present a crystal structure containing two related tetrameric forms of Vps75 within the crystal lattice. We show Vps75 associates with histones in multiple oligomers. In the presence of equimolar H3-H4 and Vps75, the major species is a reconfigured Vps75 tetramer bound ...

متن کامل

Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction.

Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtaine...

متن کامل

The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4–DNA complexes

The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone-his...

متن کامل

Promoter regulation by distinct mechanisms of functional interplay between lysine acetylase Rtt109 and histone chaperone Asf1.

The promoter activity of yeast genes can depend on lysine 56 (K56) acetylation of histone H3. This modification of H3 is performed by lysine acetylase Rtt109 acting in concert with histone chaperone Asf1. We have examined the contributions of Rtt109, Asf1, and H3 K56 acetylation to nutrient regulation of a well-studied metabolic gene, ARG1. As expected, Rtt109, Asf1, and H3 K56 acetylation are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2006